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Abstract
We suggest a method that evaluates the horizontal velocity in the solar photosphere with easily
observable values using a combination of neural network and radiative magnetohydrodynam-
ics simulations. All three-component velocities of thermal convection on the solar surface have
important roles in generating waves in the upper atmosphere. However, the velocity perpen-
dicular to the line of sight (LoS) is difficult to observe. To deal with this problem, the local
correlation tracking (LCT) method, which employs the difference between two images, has
been widely used, but LCT has several disadvantages. We develop a method that evaluates
the horizontal velocity from a snapshot of the intensity and the LoS velocity with a neural net-
work. We use data from numerical simulations for training the neural network. While two
consecutive intensity images are required for LCT, our network needs just one intensity image
at only a specific moment for input. From these input array, our network outputs a same-size
array of two-component velocity field. With only the intensity data, the network achieves a high
correlation coefficient between the simulated and evaluated velocities of 0.83. In addition, the
network performance can be improved when we add LoS velocity for input, enabling achieving
a correlation coefficient of 0.90. Our method is also applied to observed data.
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1 Introduction

The solar surface is filled with turbulent thermal convec-

tion. The energy is continuously generated by nuclear

fusion around the centre of the sun. This input energy

is transported outward by the radiation in the radiation

zone (70% of solar radius). In the outer 30% of the so-

lar interior, the energy is transported outward by thermal

convection. This layer is called the convection zone (e.g.,

Nordlund et al. 2009). This thermal convection causes a

mottled appearance called granulation at the surface. The

lifetime, the spatial scale, and the typical velocity of the

granulation are several minutes, 1 Mm, and 3–4 km s−1,

respectively (e.g., Spruit et al. 1990). Thermal convection

in the solar photosphere causes several phenomena in the

upper atmosphere and is related to poorly understood so-
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lar phenomena, such as coronal heating and magnetic field

generation. Thus, it is important to evaluate the thermal

convection velocity in the sun. The line of sight (LoS) ve-

locity (i.e., the Doppler velocity) can be measured by the

Doppler effect. For example, satellites for solar observa-

tion, such as Hinode (Kosugi et al. 2007; Tsuneta et al.

2007) and the Solar Dynamics Observatory (SDO:Pesnell

et al. 2012; Scherrer et al. 2012), have instruments for ob-

serving the Doppler shifts at multiple spectral lines.

While we can evaluate the LoS flow velocity using the

Doppler effect relatively easily, the flow velocity perpen-

dicular to the LoS is difficult to measure because the mo-

tion does not cause any Doppler shift. To deal with this

problem, local correlation tracking (LCT:November and

Simon 1988) is widely used. This method evaluates the

horizontal velocity field from the displacements of struc-

tures within two successive intensity maps. Because LCT

compares close sub-region pairs and finds a large correla-

tion between the two images, this method requires many

numerical operations. Moreover, LCT cannot be used with

images of arbitrary cadence. In addition, LCT can only

evaluate the mean in time and is not good at detecting

steady flow in which no apparent motion can be observed.

By contrast, many magnetohydrodynamics (MHD) sim-

ulations of the solar photosphere have been improved in

the past three decades (Stein and Nordlund 1998; Vögler

et al. 2005). The improvements in computer performance

and algorithms make it possible to reproduce solar ob-

servations in simulations in detail. We can obtain many

sets of data such as intensity and three-component velocity

in each snapshot using numerical simulations. Numerical

simulations have also been used to validate LCT (Verma

et al. 2013).

Asensio Ramos et al. (2017) developed an algorithm

that estimates the horizontal velocity field using a com-

bination of numerical simulation and neural network as a

substitute for LCT. This algorithm, DeepVel, estimates

horizontal velocity at optical depth τ=1, 0.1, and 0.01

from two intensity maps obtained 30 seconds apart. The

DeepVel obtains a correlation coefficient of 0.83 at τ=1

between the estimated and simulated velocity. In addi-

tion, DeepVelU (Tremblay and Attie 2020) , an enhanced

version of DeepVel, can use the intensity, the LoS veloc-

ity field, and LoS magnetic field as trackers and achieve

a correlation coefficient of 0.947. These algorithms also

achieved similar values of the correlation coefficient at the

other optical depths and can detect vortices more clearly

than LCT. The DeepVel and DeepVelU evaluate the hor-

izontal velocity from two images at a specific interval.

When the cadence of the new data is different from that

used in training, the network needs to be trained again for

the new data. Moreover, Ishikawa et al. (2022) improved

the correlation coefficient to 0.95 using a network structure

focusing on spatial scales.

In this study, we perform numerical simulations to ob-

tain modeled physical quantities and develop a method

that estimates the horizontal velocity field in the solar sur-

face from the intensity and the LoS velocity in one observa-

tion snapshot with the neural network using the calculated

data. Because the network is constructed only with con-

volution, the network evaluation is fast for any intensity

image size. A big advantage of this study compared with

the previous research (e.g., Asensio Ramos et al. 2017) is

that we only require a single snapshot for the evaluation.

Thus, we can apply the network to observations with any

length of the time cadence. We confirm that the network

can be applied to observations and compare our result with

that of LCT.

2 neural network training
2.1 Numerical simulation

The data used in this study are calculated by the Radiation

and RSST for Deep Dynamics (R2D2:Hotta et al. 2019;

Hotta and Iijima 2020; Hotta and Toriumi 2020) MHD

simulation code. The R2D2 solves the following equations.

∂ρ

∂t
=−∇ · (ρv) (1)

∂

∂t
(ρv) =−∇ · (ρvv)−∇p+ ρg+

1

4π
(∇×B)×B (2)

∂B

∂t
=∇× (v×B) (3)

ρT
∂s

∂t
= ρT (v ·∇)s+Q (4)

p= p(ρ, : s) (5)

Here, ρ, v, p, T , g, B, s, and Q are the density, ve-

locity, pressure, temperature, gravitational acceleration,

magnetic field, entropy, and radiative heating, respectively.

The R2D2 solves the equations with a fourth-order spatial

derivative and four-step Runge–Kutta method for time in-

tegration. Pressure p is obtained from the entropy and the

density table prepared by the OPAL equation of state con-

sidering partial ionisation (Rogers et al. 1996). Radiative

heating Q is calculated by solving the radiation transfer

equation using the grey approximation and the short char-

acteristic in 24 directions.

The simulation box size is 6.144 Mm × 6.144 Mm in the

horizontal direction and 3.072 Mm in the vertical direction.

The number of grid cells is 128 in each direction. Thus,

the horizontal and vertical grid spacings are 48 km and 24

km, respectively. Considering the typical lifetime of the

granulation (several minutes), we set the output cadence
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to five minutes. While we can obtain more data with a

shorter cadence, the convection structure does not change

significantly with the shorter time interval. We choose the

output cadence to compromise the data amount and the

neural network training efficiency. We initiate calculations

with different initial vertical magnetic fields, 1, 20, and

30 G, to ensure data generality. We obtain about 30,000

snapshots of data. For the training, we use the data at

τ=1 surface defined with the Rosseland mean opacity.

2.2 Network structure

In this study, we mainly train two neural networks named

Networks I and IV. The radiative intensity is used as an

input for both networks, and the vertical velocity at the

τ = 1 surface is used as additional input for Network IV.

These networks have almost the same structure. We em-

phasize that we use a huge amount of data for the training,

but we only require a single snapshot of the data for the

practical evaluation. The output is two components of the

horizontal velocity with the same number of grid points

as the original input data. The network has the encoder–

decoder structure only with convolution. This structure is

often used in image recognition because it can be applied

to any image size by a learning filter. The encoder–decoder

structure is divided into encoder and decoder. The encoder

extracts the feature of the input image and compresses

the image, and the decoder converts the compressed im-

age to an output image. In this study, the network is

based on U-net (Ronneberger et al. 2015) with some skip

connection that delivers information from the encoder to

the decoder. The common encoder–decoder tends to lose

positional information on input. U-net solves this prob-

lem using the skip connection. In addition, we deepen the

networks by placing ResidualNet between the encoder and

decoder. ResidualNet is a structure that repeats the skip

connection at a small interval.

The network structure is shown in Fig. 1. The network

can be applied to any size of two-dimensional input inten-

sity and vertical velocity image. We note that some layers

divide the width of an image in half, and bit error may

increase with an odd number of pixels. The kernel size of

convolution is 3×3, and we use rectified linear unit (ReLU)

for the activation function. When image size is reduced by

downsampling, we quadruple the number of filters so that

the amount of information does not decrease. The U-net

was developed for biological-image segmentation. In the

segmentation problem, max pooling is generally used to

extract features of the image. All information of the input

image in this study is related to output images (horizon-

tal velocities). Thus, we choose the convolution with the
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Fig. 1. The network architecture is shown. The top panel shows the whole
network. The bottom panel shows the residual network in the orange box in

the top panel. The black squares show the shape of the data, and the
numbers on the left and the top show the size and number of the images,

respectively. The process shown by the coloured arrows change the shape
of the data. The input and output of the residual blocks are the same.

stride size of two and a kernel size of 2× 2 for downsam-

pling. We use the same size, stride, and number of filters as

the convolution process in the deconvolution process, i.e.,

the reversed procedure of convolution is adopted for the

deconvolution. We note that in the final step, we output

two images of velocity (two components of velocity). In

our network, we obtain a set of velocity fields in a square

area 4 Mm on a side.

2.3 Training setting

We use the intensity and vertical velocity maps of 128×128

pixels obtained from the numerical simulations as the input

of the network. The intensity is normalised by the tempo-

ral and spatial average intensity of the sun. For outputs,

we use the two-component velocity field of 128×128 pixels.

The unit for velocities is km s−1. We prepare about 30,000
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datasets for training. We also rotate the image by 90, 180,

and 270 degrees to increase the amount of data. We note

that the DeepVel adopted the same way, i.e., the rotated

image, for increasing the data amount (Asensio Ramos

et al. 2017). Finally, we use about 120,000 datasets for

training. In addition to these data, we prepare about 1,000

datasets for network validation. Mini-batches comprising

32 datasets are randomly selected from training data. We

note that the mini-batch is a set of datasets, with which

the network performance tends to increase (Wu and He

2018). The network trains in 128 epochs, and the network

with the highest correlation coefficient between the evalu-

ation of the network and validation data is adopted. The

network is optimised to minimise the mean square error

using the Adam optimiser (Kingma and Ba 2014).

We use TensorFlow and its wrapper, Keras, for imple-

menting the network and an Nvidia GeForce RTX 2080 Ti

GPU for training.

3 Result
3.1 Validation of image

Fig. 2 shows the estimated horizontal velocity by Networks

I and IV. Panels a, b, c, d, e, and f show the intensity, simu-

lated horizontal velocity, and estimated horizontal velocity

by Network I, and the vertical magnetic field, vertical ve-

locity, and estimated horizontal velocity by Network IV, re-

spectively. The white arrows show the horizontal velocity,

and the background colour map shows the horizontal diver-

gence of the flow. We use the magnetic field in §3.3. The

results show that the structure estimated by the network

roughly reproduces the original velocity field. The network

can also detect the vortex at (y,z) = (2 Mm,5 Mm).

We calculate the correlation coefficient defined as:∑
(vsim − v̄sim)(veva − v̄eva)√∑

(vsim − v̄sim)2
√∑

(veva − v̄eva)2
(6)

where vsim and veva are the simulated and estimated hori-

zontal velocity for the validation dataset, respectively.
∑

is the sum of all pixels and all validation data, and the

overbar is the mean of the two-dimensional data. The cor-

relation coefficients for Networks I and IV are 0.83 and

0.90, respectively. The mean absolute error values

|v⃗sim − v⃗eva| (7)

are 0.92 km s−1 and 0.72 km s−1, the R2score values

1−
∑

(vsim − veva)∑
(vsim − v̄sim)

(8)

are 0.71 and 0.82, and the mean angular differences are

28.6◦ and 22.6◦ for Networks I and IV, respectively. The

mean angular difference θ describes the angle between the

flow vectors of the evaluated and simulated flows.

θ = arccos

(
veva ·vsim

|veva||vsim|

)
(9)

Fig. 3 shows the difference in the absolute value be-

tween the simulated and evaluated values. Panels a and b

show the results from Networks I and IV, respectively. One

may notice that the difference increases around the granu-

lar boundary. This is because the structure of the granule

boundary is complex, and the sign of velocity changes in

this area. This small-scale turbulence does not obey the

overall coherent pattern of thermal convection, i.e., the

broad areas of diverging flows and narrow lanes of con-

verging flows.

Fig. 4 shows two-dimensional histograms of the simu-

lated and estimated velocities. Panels a and b show the

results from Networks I and IV, respectively. While most

data points are located on the line y=x, the network tends

to underestimate the velocity with respect to high simu-

lated velocities and the fitted slope is smaller than unity.

This result indicates that our evaluation tends to show

lower velocity than the simulated velocity.

3.2 Dependence of networks on the amount of data

Overtraining occurs when the training data lack generality

and can be suppressed by increasing the amount of data.

To test the effect of the amount of data on the network, we

trained Network I with different numbers of datasets. The

training results with dataset numbers of 3,000, 30,000, and

120,000 are shown in Table 1. We note that the correlation

coefficient and R2score should be unity for the perfect eval-

uation. The other evaluation parameters should be zero

for the perfect evaluation. Fig. 5 also shows the learn-

ing curves of these data. These results show that increas-

ing the amount of data improves the network performance

and suppresses overtraining. The solid and dashed lines

show the learning curve for training and validation data,

respectively. The discrepancy between these lines indicates

overtraining. The estimation ability does not change much

between 30,000 and 120,000 datasets. This indicates that

increasing the amount of data does not drastically improve

network performance.

3.3 Dependence of networks on input

In the previous sections, we compare Networks I (intensity)

and IV (intensity and vertical velocity). In this section, we

perform additional investigations for the input. We use a

vertical magnetic field that is observable by the Zeeman ef-

fect as input data. We train four networks using different

inputs: (I) intensity, (IV) intensity and vertical velocity,
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Fig. 2. Examples of the evaluation: (a) intensity, (b) simulated horizontal velocity, and (c) estimated horizontal velocity by Network I, and (d) vertical magnetic
field, (e) vertical velocity, and (f) estimated horizontal velocity by Network IV are shown. The white arrows show the velocity, and an example of a length of 10

km s−1 is shown by the blue arrow in the lower right corner. Note that the input value for the magnetic field is preprocessed and thus differs from (d).

Table 1. The results with different numbers of datasets
Number of datasets 3,000 30,000 120,000

Correlation coefficient 0.70 0.80 0.83

R2score 0.42 0.63 0.69

Mean square error [(kms−1)2] 1.76 1.41 1.29

Mean absolute error [kms−1] 1.36 1.06 0.96

Mean angle [degree] 45.0◦ 33.7◦ 29.7◦

∗ The results of validation functions for Network I.

(IB) intensity and vertical magnetic field, and (IVB) inten-

sity, vertical velocity, and magnetic field. Because intensity

is the easiest to observe, we do not consider the network

without intensity. Fig. 2 shows the example of physical

quantities to input in panels a, d, and e. The distribution

of the magnetic field has a large kurtosis, in which most of

the values are close to zero. This type of distribution is dif-

ficult to use for evaluation. Thus, we process the magnetic

field as:

B′
x =

Bx

|Bx|
log

(
1+

Bx

Bcr

)
, (10)

where B and B′ are the original magnetic field and the pro-

cessed quantity, respectively. Bcr is a free parameter, and

we choose Bcr = 1G. Table 2 and Fig. 6 show the results

of the validation functions of different networks and their

learning curves, respectively. The network performance is

improved by adding vertical velocity. This is because the

velocity field is less diffuse than intensity and has more de-

tailed information. By contrast, the role of the magnetic

field is much less important. Especially, the difference be-

tween Networks (IV) and (IVB) is insignificant. The effect

of the vertical magnetic field on the velocity field is indi-

rect.

3.4 Comparison with previous studies

We compare Network I with the DeepVel (Asensio Ramos

et al. 2017) and DeepVelU (Tremblay and Attie 2020),
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Table 2. The results with different inputs
Network I IV IB IVB

Input data I I,vx I,Bx I,vx,Bx

Correlation coefficient 0.84 0.90 0.86 0.90

R2score 0.71 0.81 0.74 0.81

Mean square error [(kms−1)2] 1.25 1.01 1.18 0.98

Mean absolute error [kms−1] 0.92 0.74 0.88 0.72

Mean angle [degree] 28.6◦ 22.6◦ 26.9◦ 21.9◦

∗ The results of validation functions with different inputs. x indicates the

vertical direction.
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Fig. 3. (a) and (b) The differences between the simulated and estimated
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respectively. The background grey map shows the input intensity.
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estimated velocities for each simulation velocity.
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which obtain the solar velocity field using a method simi-

lar to that used in this study. The DeepVel and DeepVelU

estimate the horizontal velocity with two consecutive in-

tensity images, LoS velocity or LoS magnetic field. This

means that these methods are an alternative to LCT. This

is different from the network in this study using one snap-

shot.

The training data for the DeepVel are 30,000 images of

50× 50 pixels and for the DeepVelU are 2,000 images of

48× 48 pixels. Our data are 120,000 images of 128× 128

pixels. The amount of data used in this study is 20 times

larger than that used in the DeepVel. The correlation coef-

ficient between the velocity estimated by the DeepVel and

the simulated one is 0.83. Because the DeepVel requires

two input images, the velocity can be estimated from the

temporal difference. By contrast, our network can estimate

it from one snapshot and achieves a similar performance

to DeepVel without using temporal evolution information.

4 Application to Observation

In this section, we apply our network to observed data.

The data were taken through a green continuum filter cen-

tred at 555 nm by the Hinode Solar Optical Telescope

(SOT). We here use a snapshot taken at 11:46:34 on Dec.

29, 2007, with an exposure time of 0.077 s. Fig. 7 shows

the overall view of the observed data. We perform linear

interpolation on the 39 km × 39 km observed data to align

the resolution of the 48 km × 48 km training data. The

image with the aligned resolution is shown in Fig. 7b, and

the area of panel b is indicated by the red square in panel a.

The data are normalized by the average radiation intensity

of the entire observation image. The original observation

image (a) has a pixel scale of 0.054”. We crop out a FOV

of about 161 pixels.

To apply the network to the observations, we use

Hinode’s point spread function (PSF) to the intensity of

10 3 10 2

Wavenumber [1/km]

10 4

10 3

10 2

10 1

100

Observation
Simulation
Training data

Fig. 8. The radiation intensity spectra are shown. The blue, orange, and
green lines show observation, simulation, and training data, respectively.

The horizontal axis shows the wavenumber, and the vertical axis shows the
intensity normalized by the respective maximum value.

the training images described above. We apply the PSF

at 555 nm green continuums described in Mathew et al.

(2009). The network trained with the data with the PSF

is named Network IP. This is not enough to prevent the

network from overtraining. Fig. 8 shows the wavenumber

distribution of the observed and simulated intensity. While

the wavenumber distributions at large scale are consistent,

the observation intensity has small-scale structures that

are not present in the simulation data. This difference is

assumed to be noise in obtaining the horizontal velocities,

so we add random noise to the data to ignore the small-

scale structure of the observed data. We add random noise

in the Fourier space. The mean of the noise is zero and

the standard deviation normalized with the maximum in-

tensity is 1.6× 10−3. We remove the information of small

scales that does not match the observed and simulated data

for the training by adding the noise and letting the net-

work apply it. Here we name the network trained with the

data with the PSF and noise as Network IPN. Because we

intend to evaluate the velocity before using the PSF, we do

not apply the PSF for the horizontal velocities, which is the

output. All other settings are unchanged from Networks I

and IV.

Fig. 9 shows the results of our application to the ob-

served data. Panel a shows the observed intensity. Panels

b and c show the network evaluation of the horizontal ve-

locity by Networks IPN and IP, respectively. Network IP

seems to fail the evaluation (panel c) because the velocity
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structure is not a typical granule network structure, while

Network IPN shows reasonable evaluation (panel b). This

result shows that adding noise is an important factor to

apply our network to the real observed data. We also

apply Networks IPN and IP to the simulation data. Figs

10b and 10c show the result with Networks IPN and IP,

respectively. For the simulation data, the difference be-

tween Networks IPN and IP is not significant. In the early

stage of training, the networks can fit the large scale and

gradually shift to smaller scales. It becomes difficult for

Network IP to estimate velocity from the observed data

due to the noise. In Network IPN, the small-scale struc-

ture vanishes due to random noise, and thus it can estimate

the observations.

The performance of Networks IP and IPN is lower than

that of Network I because we apply the PSF and the noise

to the training data. The correlation coefficient between

the network estimated velocity and the simulation is 0.64,

and the R2score is 0.42. In addition, the two-dimensional

histogram is shown in Fig. 11. For this network, applying

PSF alone does not change the final performance much,

although it will change the update speed of the network.

This decrease in estimation performance is due to the res-

olution of observation. Currently, we cannot observe the

small-scale flow achieved in the numerical simulation. If

the resolution is improved with the development of ob-

servational technology, the correlation coefficient between

network estimation and simulation will be better.

5 Comparison with LCT

We compare the velocity evaluated by the Fourier LCT

(FLCT) with the velocity estimated using the network that

can apply to the observations made in the previous section.

We use the FLCT code by Fisher and Welsch (2008) for

LCT. The FWHM of the Gaussian of the FLCT is 1200 km.

We can obtain horizontal velocity maps from two consecu-

tive images using LCT. Note that LCT can be performed

at some arbitrary interval; we choose 30 seconds as the in-

terval in this study. A total of 19 horizontal maps over 10

minutes obtained with LCT are averaged and compared

with the result of the network. We have performed 19

time averages under the same conditions for the network

evaluation. We carry out a parameter survey to optimize

free parameters in applying LCT. We test LCT using pa-

rameters that would cover typical temporal and scales of

thermal convection with simulated velocity. These param-

eters included averaging times of 5 min, 10 min, 20 min, 30

min, and snapshot; FWHM values of 300 km, 600 km, 1200

km, and 2500 km; and intervals of 30 s, 60 s, and 120 s.

We tested a total of 75 combinations of these parameters.

We present a figure on this comparison in Appendix 1. We

show the results of the best parameters that obtained the

highest correlation coefficient between the horizontal ve-

locity field from the simulation and the one estimated by

LCT.

First, we apply LCT and network to the simulation data

and compare their performance. Fig. 12 shows the veloc-

ity fields evaluated by LCT and our network and in sim-

ulation. The results of the simulation and the network

are similar. It appears that some structure is detected

by LCT. However, LCT results do not match the sim-

ulation in scale or structure. The correlation coefficient

between the simulation and LCT velocities is 0.19 and be-

tween LCT velocities and the network is 0.13. Given our

thorough characterization of LCT performance for a rea-

sonable range of input parameters, we conclude that LCT

is incapable of accurately recovering granular-scale flows

at the spatial resolution studied here. The correlation co-

efficient between the network and the simulation velocity

is 0.84. The correlation coefficient between the neural net-

work and the simulation increases because the small-scale

complex structure disappears due to the temporal average.

Next, we compare the results with the observed data.

We use the data from 2007-12-29T11:56:34 to 2007-12-

29T12:06:05. The results are shown in Fig. 13 . In this

case, the correlation coefficient between LCT and the neu-

ral network is 0.06, which is hardly consistent. With LCT,

it is difficult to extract displacements from events with

small time and spatial scales. We cannot capture the flow

converging in the granule lane. To effectively capture this

flow, resolving this region with a higher pixel count than

the LCT window is necessary. Observations at higher reso-

lution are therefore required. Considering that pixels in the

simulated data (48 km in horizontal extent) approach the

highest-resolution observations presently available, higher-

resolution instrumentation would have to be developed

to employ optical flow methods like LCT to study sub-

granular flows. In addition, because LCT tracks the ap-

parent flow rather than the actual velocity, LCT leads to

a smaller velocity than simulation and network velocity.

Malherbe et al. (2018) reported that LCT has difficulty

in evaluating the flow in the granulation scale (see also

Tremblay et al. 2018). Tremblay shows it is also difficult

for LCT to evaluate the velocity at the edges of the images

because occasionally a feature goes out from the data do-

main in the next step. Our neural networks do not have

this difficulty because only a snapshot is required for the

evaluation.
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Fig. 9. (a) The input intensity observed in the Hinode, (b) the estimation by the network trained with noise, and (c) the estimation by the network trained
without noise. The result in panel c does not adapt to the Hinode image due to overtraining.
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Fig. 10. (a) The input intensity in the simulation, (b) the estimation by the network trained with noise, and (c) the estimation by the network trained without
noise.

6 Summary and Conclusion

We develop a method that estimates the solar horizontal

velocity field, which cannot be directly measured, from the

radiative intensity and other variables easier to observe us-

ing neural network technology. The network is constructed

only with convolution. The network can be applied to any

image size. Using a GPU, the network can estimate the

velocity quickly. Although we cannot obtain the exact hor-

izontal velocity corresponding to the intensity in real obser-

vations, we obtained the training and validation data from

a numerical calculation using the R2D2 radiation MHD

code.

When we include the vertical velocity as additional in-

put, the network performance is improved. By contrast,

the vertical magnetic field does not improve the evalua-

tion performance much.

The correlation coefficient between the simulation’s ve-

locities and that estimated by the network is 0.83. The

overall structure and the velocity inside the granule are

consistent. However, it is not easy to estimate the veloc-

ity at the granular boundary. High velocities (> 5 km s−1)

tend to be underestimated. There are still possible ways to

improve the evaluation skill of our network. For example,

the network can be divided into two networks. When one

network evaluates the absolute value and the other eval-

uates angle, the combination of the two networks may be

able to evaluate the complicated turbulent structure well.

Comparing to DeepVel, which uses a similar method to

our network, we achieved almost the same performance as

the DeepVel with a smaller amount of input data. Our

network estimates the horizontal velocity from one snap-

shot of the image. Thus, we can obtain the velocity from

the observation with any length of the time cadence.

If we estimate the horizontal velocity field for the real

observation from the intensity using a network trained with

simulated data, the network overtrains and does not pro-

vide a reasonable result. Therefore, we introduce the PSF

of Hinode and reduce the small-scale structure by adding

white noise to the training data for the network, which

makes the estimated velocities more accurate. Because
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Fig. 11. A two-dimensional histogram of the velocity field estimated by
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line shows the result of the linear fitting of the data, where
veva = 0.403vsim − 0.067. The black line shows the average of the

estimated velocities for each simulation velocity.

the network for the observation (Networks IP and IPN)

includes the influence from the PSF and the noise, the cor-

relation coefficient is decreased compared with Network I.

This implicitly indicates that if the influence of the PSF

and the noise is reduced in actual observation in the future,

our evaluation ability will increase. We apply LCT to the

simulation data to determine optimal parameters. We can-

not find parameter combinations of similar accuracy to the

network estimation. Because we try to estimate the hori-

zontal velocity in the granulation scale, LCT tends to fail

the evaluation. Even for these scales, our network succeeds

in evaluating the horizontal flow. By contrast, evaluating

scales smaller than the granulation is difficult because of

the loss of information due to the addition of noise. Even

training without noise is difficult for small-scale estima-

tion, and Ishikawa et al. (2022) suggest that a significant

update is needed, such as changing the training method

and increasing the amount of input information.

For future studies, we consider estimating other quan-

tities that are difficult to observe, such as the horizontal

magnetic field or the quantity inside the sun, by using the

intensity and other observable quantities.
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A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet,

and T. Linde. Simulations of magneto-convection in the

solar photosphere. Equations, methods, and results of the

MURaM code. A&A, 429:335–351, January 2005. .

Yuxin Wu and Kaiming He. Group Normalization. arXiv e-

prints, art. arXiv:1803.08494, March 2018. .

Appendix 1 Parameter survey of LCT

This appendix presents the parameter survey of LCT.

Figures 14, 15, and 16 show horizontal divergence of the

velocity field with LCT at 30, 60, and 120-second intervals,

respectively. The first, second, third, and fourth row show

the data with time averages of 5, 10 , 20 and 30 min,

respectively. The first, second, third and fourth columns

show the result with FWHMs of 300, 600, 1200, 2500 km,

respectively. The rightmost column shows the simulated

velocity field. The correlation coefficients (CC) calculated

with the simulated velocities are shown at the top of each

panel. Note that the correlation coefficients are calculated

from the velocity field, not the horizontal divergence.

Since CC shows the highest value (0.192) with invervals

of 30s, average time of 10 min, and FWHM of 1200 km

(third row and third column of Fig. 14), we adopt this

parameter in the main manuscript.
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Fig. 14. These figures show the divergence of the horizontal velocity field obtained using LCT with a 30 s interval. Each row contains images averaged over
the same time; each column represents images with the same FWHM. The rightmost column presents the time-averaged horizontal velocity field of the

simulation. Above each image, the correlation coefficient (CC) with the corresponding simulated velocity is shown.
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Fig. 15. These figures show the divergence of the horizontal velocity field obtained using LCT with a 60 s interval. Each row contains images averaged over
the same time; each column represents images with the same FWHM. The rightmost column presents the time-averaged horizontal velocity field of the

simulation. Above each image, the correlation coefficient (CC) with the corresponding simulated velocity is shown.
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Fig. 16. These figures show the divergence of the horizontal velocity field obtained using LCT with a 120 s interval. Each row contains images averaged over
the same time; each column represents images with the same FWHM. The rightmost column presents the time-averaged horizontal velocity field of the

simulation. Above each image, the correlation coefficient (CC) with the corresponding simulated velocity is shown.


